Categorical Pullbacks

نویسنده

  • Marco Riccardi
چکیده

The main purpose of this article is to introduce the categorical concept of pullback in Mizar. In the first part of this article we redefine homsets, monomorphisms, epimorpshisms and isomorphisms [6] within a free-object category [15] and it is shown there that ordinal numbers can be considered as categories. Then the pullback is introduced in terms of its universal property, and the Pullback Lemma is formalized. In the last part of the article we formalize the pullback of functors [13] and it is also shown that it is not possible to write an equivalent definition in the context of the previous Mizar formalization of category theory [7].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of the category of Kelley spaces

We show that the cartesian closed category of compactly generated Hausdorff spaces is regular, but is neither exact, nor locally cartesian closed. In fact we find a coequalizer of an equivalence relation which is not stable under pullbacks.

متن کامل

Unifying exact completions

We define the notion of exact completion with respect to an existential elementary doctrine. We observe that the forgetful functor from the 2-category exact categories to existential elementary doctrines has a left biadjoint that can be obtained as a composite of two others. Finally, we conclude how this notion encompasses both that of the exact completion of a regular category as well as that ...

متن کامل

Categorical Properties of Soft Sets

The present study investigates some novel categorical properties of soft sets. By combining categorical theory with soft set theory, a categorical framework of soft set theory is established. It is proved that the category SFun of soft sets and soft functions has equalizers, finite products, pullbacks, and exponential properties. It is worth mentioning that we find that SFun is both a topologic...

متن کامل

Quantum Logic in Dagger Kernel Categories

This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categori...

متن کامل

Abelian categories and definable additive categories

2 The category of small abelian categories and exact functors 4 2.1 Categorical properties of ABEX . . . . . . . . . . . . . . . . . . . 5 2.2 Pullbacks in ABEX . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 ABEX is finitely accessible . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Abelian categories as schemes . . . . . . . . . . . . . . . . . . . . 16 2.4.1 The functor of point...

متن کامل

Quantum Logic in Dagger Categories with Kernels

This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Formalized Mathematics

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2015